Application of pulsed power driven plasmas to study astrophysical jets and supersonic outflows

Simon Bott, Farhat Beg

University of California, San Diego

Sergey Lebedev, Jerry Chittenden

Imperial College London, UK

Introduction

 Mass ablation rate described by Rocket model (S.Ledebev, Phys Plasmas, 8, p3734, (2001))

$$V_{abl} \frac{dm}{dt} = -\frac{\mu_0 I^2}{4\pi R_0}$$

Time-slice from 3D Resistive MHD Gorgon Code (J.Chittenden, Plasma Phys Control Fusion **46**, B457 (2004)

- Mass ablated determined by I_{max}
- Timescale determined by $\boldsymbol{\tau}$

I _{MAX} .				
Generator Drive Current / MA				_
	0 50 100	150 2	200 250 3	350
	-	Time/ ns	<u>'</u> τ	

Generator	Location	l _{max}	τ
MAGPIE	Imperial College	1MA (2MA)	250ns
GenASIS	UCSD	0.25 MA	150ns
X-Pinch Driver	UCSD	0.08 MA	50ns

Supersonic Plasma Flow

Flow Parameters

- Plasma density (N_{ion}): 1x10¹⁴ 5x10¹⁷cm⁻³
- Plasma Velocity: 1.5x10⁵ ms⁻¹
- $T_e = 5-15 \text{ eV}$
- Mach number: 3-5
- R_m < 1 (experimental)

Collisionality

$$\lambda_{perp} = \frac{m_{ion}^2 v_{abl}^4}{8\pi Z^4 e^4 n_{ion} \ln \Lambda \sqrt{\pi/2}}$$

MAGPIE

Al: typically <1mm

W:>8mm for $\sim 140ns$

UCSD:

Some collisionless flow even for Al

Time-slice from 3D Resistive MHD Gorgon Code (J.Chittenden, Plasma Phys Control Fusion **46**, B457 (2004)

Gated axial XUV self-emission images from 16 wire arrays on MAGPIE

Shock formation in supersonic plasma flow

Collisional systems:

• e.g. Nested Wire Arrays at >1MA

Shock formation in supersonic plasma flow

Collisional systems:

- e.g. Nested Wire Arrays at >1MA
- Data from 32 outer and 16 inner Al wires on MAGPIE
- · Bow shocks formed around inner wires
- Secondary shocking also observed
- D.J.Ampleford at HEDLA

Axial gated XUV self-emission imaging of nested Al arrays on MAGPIE (D.J.Ampleford in prep. PRL)

Shock formation in supersonic plasma flow

Collisional systems:

- e.g. Nested Wire Arrays at >1MA
- Data from 32 outer and 16 inner Al wires on MAGPIE
- · Bow shocks formed around inner wires
- Secondary shocking also observed
- D.J.Ampleford at HEDLA

Collisionless systems:

- UCSD experiments will provide collisionless flow,
- E.g. Laser driven experiments by Bell et al Phys Rev A, 38, p1363 (1998)
- Good diagnostic access and shot rate

Axial gated XUV self-emission imaging of nested Al arrays on MAGPIE (D.J.Ampleford in prep. PRL)

Inertially Confined plasma column formed

Axial (lineouts right) and radial gated XUV self-emission images, along with column density with time for MAGPIE and COBRA W experiments (Bott et al, Phys Rev E, **74** 046403 (2006))

Optical Streak Photograph from MAGPIE of 32 wire Al array

Radiatively cooled and steady state (several shock transit times)

Hydrodynamic Jet formation

Typical Parameters scale well to astrophysical jets

General flow variables

Length (cm)	2
Width (cm)	0.1
Dynamical time Scale	100ns
Electron temperature (eV)	10
Jet tip velocity (km/s)	~200
Jet density, → (g/cm ³)	10-4

Validity of fluid description

Localisation parameter 10^{-4} Reynolds Number (R_e) $10^5 - 10^8$ Peclet number (P_e) $2 - 2 \times 10^3$

Jet scaling

Mach number, M > 20
Density Contrast, 100/~1
Cooling Parameter. 1

S.Lebedev et al, ApJ **564**, p113 (2002) S.Lebedev et al, ApJ, **616**, p988 (2004)

Internal shock structure during deflection D.J.Ampleford, Astro & Space Sci , **307**, p29 (2007)

Ciardi *et al*, ApJ (accepted) A.Frank, Astro. Space Sci , **298**, p107 (2005)

Variation of jet parameters: Jets at UCSD

- Range of jet parameters possible using different currents (e.g. 2 Generators at UCSD & MAGPIE)
- First free propagating jets from x-pinches recently measured at UCSD at 80 kA

Parameter	80 kA X-pinch measured	250 kA Conical Expected (HEDLA)
V _{jet}	3.3 x 10 ⁴ ms ⁻¹	1 x 10 ⁵ ms ⁻¹ (100 km/s)
c _s (radial exp)	$5.5 \times 10^3 \text{ ms}^{-1}$	· · · · · ·
M	4-8	M > 10
ρ _e (cm ⁻³)	few x 10 ¹⁷	~ 10 ¹⁸ - 10 ¹⁹
T (eV)	~15	~15
Z	~5	~ 5

Magnetically Driven Jets

Radial Wire Arrays

- Wires show magnetic bubble structure and jet formation (Lebedev AIP Conf. 2006)
- Foils loads show repeat formation of this structure during one current pulse
- Recently foils performed with and without a gas fill (see F.Suzuki-Vidal at upcoming HEDLA conference)

Magnetically Driven Jets

Radial Wire Arrays

- Wires show magnetic bubble structure and jet formation
- Foils loads show repeat formation of this structure during one current pulse
- Recently foils performed with and without a gas fill (see F.Suzuki-Vidal at upcoming HEDLA conference)

Magnetically Driven Jets

Radial Wire Arrays

- Wires show magnetic bubble structure and jet formation
- Foils loads show repeat formation of this structure during one current pulse
- Recently foils performed with and without a gas fill (see F.Suzuki-Vidal at upcoming HEDLA conference)

FIGURE 2a. XZ TAU. Credits: John Krist (STScI) et.al. WPFC2, HST, NASA

Future Studies at UCSD

UCSD Drivers

- Good diagnostic access, high shot rate
- 2 generators to give plasma source, and independent B-field or second plasma

Parameter space accessible

Can adjust Plasma ρ : $n_{ion} \sim 10^{14} - 10^{17}$ cm⁻³

B-field: Variable up to ~50T (200 kA)

Difficult to adjust: Plasma velocity (ablation physics)

T: 10eV in flow, 60-100 eV in column

Material At No. below 6(C) (typ. 13, Al)

Physical Conditions: Collisionality of flow

Magnetization of ions

Low T limits plasma to low β

Need to investigate application to cosmic shocks (Drake PoP 2000)

Modelling

- GORGON for hydro and magnetic jets (J. Chittenden & A.Ciardi)
- Also use of LSP, h2d, and ePlas at UCSD

Jet propagation into B-field

Kinetic compression of exploding foil

Imperial College: High current drive, extensive diagnostics, experienced team *UCSD*: 2 drivers, high shot rate in simplified set-ups

Compression of targets using ablated plasma flow

Pressures: 1 – 100 kbar

Imperial College: High current drive, extensive diagnostics, experienced team *UCSD*: 2 drivers, high shot rate in simplified set-ups

Compression of targets using ablated plasma flow

Pressures: 1 – 100 kbar

Magnetic field in precursor column

Twisted Arrays

Imperial College: High current drive, extensive diagnostics, experienced team *UCSD*: 2 drivers, high shot rate in simplified set-ups

Compression of targets using ablated plasma flow

Pressures: 1 – 100 kbar

Magnetic field in precursor column

Twisted Arrays
Inductive split from main
current
Additional generator

Imperial College: High current drive, extensive diagnostics, experienced team *UCSD*: 2 drivers, high shot rate in simplified set-ups

Compression of targets using ablated plasma flow

Pressures: 1 – 100 kbar

Magnetic field in precursor column

Twisted Arrays
Inductive split from main
current
Additional generator

B-field flux compression

Imperial College: High current drive, extensive diagnostics, experienced team *UCSD*: 2 drivers, high shot rate in simplified set-ups

Jet Interaction Experiments

Use of radial / conical arrays for interaction with

Precursor plasma column

Magnetised precursor

Counter-propagating jet

Jets and outflows from pulsed power driven plasmas

Well characterised......

- Generation and deflection of hydrodynamic jets
- Generation of magnetically driven jets

Systems developing.....

- Multi-stage magnetically driven jets
- Low jet/ambient medium density ratio experiments
- Hydro Jet work at UCSD
- •Jets with angular momentum (Ampleford, PRL **100**, p035001, 2008)

To come.....

- Compression of magnetised plasmas
- Propagation of plasma into B-field / magnetised targets
- Collisionless shock systems